Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset includes chlorophyll-a concentrations, periphyton biomass estimates, water quality measurements, and qualitative observations from a large-scale mesocosm experiment conducted in the Green Lakes Watershed, Colorado. The experiment was designed to test how earlier lake ice-off and increased dissolved organic material (DOM), associated with terrestrial plant encroachment in alpine watersheds, interactively influence aquatic food webs. In fall 2019, twenty 2600L “megacosms” were established at Sandy Corner (3300 m ASL; 40.042289, -105.584006), left to fill with snowmelt, and maintained throughout the 2020 open water season. The experiment followed a 2 × 2 randomized block design manipulating ice-off timing (via black vs. beige tank coloration) and DOM inputs (presence/absence of willow leaf packs), with five replicates per treatment. All tanks were seeded with sediments and zooplankton from both alpine and montane lakes (Green Lake 1 and Green Lake 4), and instrumented with thermistors recording surface and hypolimnion temperature every two hours year-round. Periphyton growth was monitored using clay tiles, sampled across five time points. Chlorophyll-a concentrations were extracted from filtered water samples and analyzed spectrophotometrically. Periphyton biomass was estimated via ash-free dry mass (AFDM) determinations, based on the mass lost on combustion of material scraped from tiles. Water quality was measured 1–2 times weekly using a YSI ProPlus multiprobe and Li-Cor quantum sensor, and snow/ice cover was qualitatively assessed monthly during winter.more » « less
-
This dataset contains water quality measurements made on Green Lakes 1, 2, 3, 4, 5, and Lake Albion. Green Lake 4 was initially sampled in 2000 and is ongoing. Ongoing sampling of Green Lakes 1 was started in 2014 and ongoing sampling of Lake Albion was started in 2016. Water samples were collected for analysis of chlorophyll a and nutrient analysis (which is available in glvwatsolu.dm.data) and field measurements for pH, temperature, specific conductivity, dissolved oxygen (DO), % saturation, secchi depth, PAR. Secchi depth is recorded at the 0m row however it is a measurement of depth and so the units are meters. Most samples were collected between 0800 and 1200 MST. The first sampling date each summer occurs shortly after the ice had melted. Data are collected from an inflatable raft at the point of deepest depth or from the lake inlet and outlet when surface flow is present. The majority of chlorophyll-a the measurements were taken at the surface (0m), the metalimnion (3m), and the hypolimnion nine (usually 8-11m). However, additional measurements were taken for side projects of the long-term dataset during several of the years and are included in this dataset. Water samples from the metalimnion or hypolimnion were collected using a Van Dorne sampler, and surface samples were collected as grab samples from the water column surface, the inlet and outlet. Field measurements were conducted using a YSI either DO or multiple probe meter (2014-2017, YSI MPS 556)(2018-ongoing, YSI ProPlus) and a Li-Cor meter with a quantum sensor. Chlorophyll-a was extracted from filtered samples and absorbance was measured before and after acidification to quantify chlorophyll a concentration.more » « less
-
This dataset contains temperature data from two Onset HOBO temperature pendant loggers installed in Green Lake 4’s inlet and outlet from summer 2019. High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. The inlet and outlet temperature data collected here, together with Niwot Ridge’s buoy deployed in Green Lake 4, allow us to understand lake hydrology, water budget, and stratification and mixing dynamics that drive seasonal in-lake processes to understand effects of warming.more » « less
-
High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. Here we describe the deployment of a single buoy line with multiple sensors at fixed-depths from a subsurface float in the water-column of Green Lake 4 (GL4). Sensors on the buoy collect data in both summer and winter, thereby providing valuable insights into lake characteristics beyond our standard sampling period, including key transitional periods such as ice formation and ice break-up.more » « less
-
High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. Here we describe the deployment of a single buoy line with multiple sensors at fixed-depths from a subsurface float in the water-column of Green Lake 4 (GL4). Sensors on the buoy collect data in both summer and winter, thereby providing valuable insights into lake characteristics beyond our standard sampling period, including key transitional periods such as ice formation and ice break-up.more » « less
-
High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. Here we describe the deployment of a single buoy line with multiple sensors at fixed-depths from a subsurface float in the water-column of Green Lake 4 (GL4). Sensors on the buoy collect data in both summer and winter, thereby providing valuable insights into lake characteristics beyond our standard sampling period, including key transitional periods such as ice formation and ice break-up.more » « less
-
High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. Here we describe the deployment of a single buoy line with multiple sensors at fixed-depths from a subsurface float in the water-column of Green Lake 4 (GL4). Sensors on the buoy collect data in both summer and winter, thereby providing valuable insights into lake characteristics beyond our standard sampling period, including key transitional periods such as ice formation and ice break-up.more » « less
An official website of the United States government
